Article: Deinstallation and cleaning of the 1950s galleries of ethnographical and archaeological material from the Americas at the Field Museum, Chicago
Author(s): Joanna Minderop, Cheryl Podsiki and Ruth Norton
Source: Objects Specialty Group Postprints, Volume Eleven, 2004
Pages: 103-125
Compilers: Virginia Greene and Patricia Griffin
www.conservation-us.org

Under a licensing agreement, individual authors retain copyright to their work and extend publications rights to the American Institute for Conservation.

Objects Specialty Group Postprints is published annually by the Objects Specialty Group (OSG) of the American Institute for Conservation of Historic & Artistic Works (AIC). A membership benefit of the Objects Specialty Group, Objects Specialty Group Postprints is mainly comprised of papers presented at OSG sessions at AIC Annual Meetings and is intended to inform and educate conservation-related disciplines.

Papers presented in Objects Specialty Group Postprints, Volume Eleven, 2004 have been edited for clarity and content but have not undergone a formal process of peer review. This publication is primarily intended for the members of the Objects Specialty Group of the American Institute for Conservation of Historic & Artistic Works. Responsibility for the methods and materials described herein rests solely with the authors, whose articles should not be considered official statements of the OSG or the AIC. The OSG is an approved division of the AIC but does not necessarily represent the AIC policy or opinions.
DEINSTALLATION AND CLEANING OF THE 1950s GALLERIES OF ETHNOGRAPHICAL AND ARCHAEOLOGICAL MATERIAL FROM THE AMERICAS AT THE FIELD MUSEUM, CHICAGO

Joanna Minderop, Cheryl Podsiki and Ruth Norton

Abstract

The Field Museum in Chicago is updating a major portion of the Americas Halls that was on permanent display from 1950 until 2003. The deinstallation phase included the complete de-installation of 53 cases and the relocation of 54 intact cases (i.e. with artifacts inside) within the museum galleries. Of the 2,128 artifacts removed from the old cases, 1,461 artifacts needed to have their old mounts removed before being reintegrated into storage. Understanding the mounting methods used in the old exhibit was imperative to the safe removal of the artifacts from their mounts. Mount types included adhered wire mesh, wooden shelves and dowels as well as wire, mannequins and nails. Mount removal methods included a vapor chamber, poultices, and mechanical removal. The written and photographic documentation of the alterations caused by the mounts will be critical to future interpretation of artifacts. Samples of the various mount materials and techniques used in the 1950s exhibition have been added to the Conservation Department’s reference collection of past mounting and storage materials used at The Field Museum. The experiences gained from the extensive gallery revision will be used to develop museum guidelines for future deinstallations of permanent exhibitions. Conservation staff required for the complete deinstallation process was two person years.

1. Introduction

Founded in 1893, The Field Museum presently houses over 25 million artifacts and specimens, with collections in the Anthropology Department numbering more than 1.5 million. The collections originated with the 50,000 artifacts and specimens that were assembled for the World’s Columbian Exposition of 1892/93 in Chicago (Fig. 1). In 1923 the collection was moved to the present museum facility. Most of the current Americas Halls were designed in the early 1950s as a permanent exhibition, with content, design, mounts and installation being reflective of that time period.

The Arctic and Northwest Coast galleries were redesigned in the 1980s to acceptable museum standards. In 2003 most of the remaining Americas cases containing ethnographic artifacts were resituated within adjacent galleries, while the cases displaying primarily archaeological artifacts were deinstalled in preparation for the new Ancient Americas exhibition. The process of revising and updating the old Americas Halls is referred to as the Americas Project.
2. The Americas Project

The first phase of the Americas Project included the complete deinstallation of 53 cases and the relocation of 54 intact cases within the museum galleries. Of the 2,128 artifacts removed from the old cases, 1,461 artifacts were taken to the conservation laboratory where the mounts were removed. Only 200 of the deinstalled artifacts will go back on display in the new exhibit. The remainder of the artifacts will be reintegrated into designated storage areas.

The second phase is dedicated to the development and installation of the new exhibit. Conservation provided individual assessments of the 2250 chosen artifacts, as well as assessment of exhibit and case design, artifact layout, and environmental, housekeeping, pest control and maintenance needs. Treatment of the artifacts and assisting with their installation will conclude this phase.

Throughout the entire process of renovating the Americas galleries, communication concerning intellectual and practical development of the exhibition continues to be key to maintaining an effective and efficient relationship with the entire Americas Project team. Team members include the project manager, curator, researcher, native community
liaison, developers, designers, collections managers and assistants, conservators, mount makers, exhibition and production staff, and educators.

3. Deinstallation

The deinstallation process of the old Americas Halls involved the coordination of a team of people composed of a conservator, a collections manager, and staff from the exhibitions and productions departments. Each step was planned in detail and discussed within the team in advance of artifact removal or intact case transport. The physical removal of the permanently mounted artifacts from cases included the pulling of nails from the case walls, sawing through wooden dowels attached to the mounts and the case walls, and cutting away the canvas wall lining onto which small artifacts had been directly adhered (Fig. 2).

![Figure 2. De-installation. Removing nails from artifacts that have been hammered to the case wall; personal protective equipment included overalls, booties, gloves and respirators. 2003.](image)

3.1. Documentation

One of the most important procedures conducted by the conservator was the written and photographic (using digital imaging) documentation of the entire process. The documentation will be a useful tool in the future for communicating the reasons why certain damage, or features such as holes, distortion patterns, fading, or surface losses are
present on artifacts (Figs. 3, 4). Documentation of any alterations to the artifacts due to extended exhibition was essential for maintaining archival records, understanding artifact damage, and assisting in cultural interpretation. To aid in this, examples of each mount type were added to the Conservation Department’s reference collection of materials and techniques from past displays and housing.

Figure 3 (left). Mannequin wearing blouse (catalogue #155674) as photographed shortly after installation in 1949. Photographer unknown. © The Field Museum, A92758.

Figure 4 (right). Mannequin wearing blouse (catalogue #155674) after de-installation in 2003 showing location of fading. 2003.

Archival photographs of the display cases from the 1950s provided important information when recording some of the visible damage that occurred to artifacts as a result of the original mounting techniques. Artifact catalog numbers and mount locations were recorded on photocopies of the original case photographs. These photocopies were then used as a tool to indicate exactly where damage to the artifact occurred. For example, lines were drawn on the images to represent the placement of nails hammered through certain artifacts (Fig. 5). A copy of the annotated case photograph was placed into each individual object conservation file for future reference.

3.2 Arsenic Treated Cases and Artifacts

Arsenic was known to have been commonly used at The Field Museum as a pesticide from the 1890s through the 1940s. Based on compiled information about the usage of arsenic in the museum (Klaus, et al. 2004), the Americas deinstallation team expected
arsenic to be present on the artifacts in the 1950s cases. Cautionary measures dictated that standard personal protective equipment (cotton jump suits, disposable Tyvek booties, nitrile gloves and respirators with particulate P100 filters) would be worn throughout the actual deinstallation process (Fig. 2). The disposal method for the empty cases would depend on whether or not arsenic was indeed present. This meant that arsenic testing had to be conducted on each of the cases prior to their dismantling and disposal. The Merckoquant Arsenic Test (see Suppliers) was employed to detect the presence of arsenic. Out of 150 samples taken (3 per case), the one sample that was positive showed only a trace of arsenic. It was later found that this sample was taken from an area located below an arsenic positive artifact. Following the museum’s health and safety guidelines, this particular case was vacuumed and wiped clean with a damp cloth so that it could be disposed of in the same manner as the other non-contaminated cases. If arsenic positive samples above the trace level had been found, the case would have been disposed of as hazardous material.

Following this intensive deinstallation phase the conservators were able to test individual artifacts for arsenic. Following standard Conservation Department procedures, all organic and 10% of inorganic artifacts were tested; this amounted to a total of 499 artifacts (319
organic and 180 inorganic). Five of the organic and none of the inorganic artifacts tested positive for arsenic.

Following the Museum’s anthropology conservation procedures, the arsenic positive artifacts were bagged and clearly labeled prior to being re-integrated in storage (Fig. 6). The testing did not include the ethnographic artifacts that remained in the intact cases.

3.3 Artifacts with Cultural Restrictions

The deinstallation of some cases needed special attention. These cases contained artifacts that specific indigenous representatives requested be handled by men only. Cultural restrictions dictated the gender composition of the deinstallation team, ensuring that removal of particular artifacts was carried out by male team members. Because there were no male conservators available at the time of deinstallation, simple mount removal tasks such as pulling nails out of artifacts were completed by male collections managers under the guidance of a female conservator. Artifacts needing more complicated treatments were set aside for male conservators and interns to address in the future.

3.4 Relocation of Intact Cases

The 54 cases containing artifacts from the post-contact period were not deinstalled but were moved to a new location within the museum galleries with mounted artifacts still intact. Prior to preparing the cases for relocation, digital images were taken of the cases to record artifact placement. Those artifacts that were merely sitting on the case floor
were removed. Permanently fixed artifacts were secured to the case wall or to their mounts with washed Tyvek 1422, cotton tape, and low-tack blue painters’ masking tape to reduce vibration and movement of artifacts while moving the case. Examples of these methods can be seen in Figs. 7 and 8. Once the artifacts were secured, the cases were placed on custom made dollies and moved to their new gallery space (Figs. 9, 10). The securing materials were removed and the unfixed artifacts were reinstalled. Ironically, the ability to move these cases intact without causing damage to artifacts was, in part, due to the permanence of the mounting and installation techniques used in the 1950s.

Figure 7. Securing dress on mannequin with Tyvek inside display case. 2003.

Figure 8. Small metal artifacts secured by covering with Tyvek and painters’ masking tape inside display. 2003.
4. Mount Removal

The process of removing 50-year-old mounts was a major component of the deinstallation phase. Due to budgetary constraints, conservation treatment of the deinstalled artifacts was limited to the removal of the mounts. Stabilization treatment was carried out only for those few artifacts in critical need. Documentation focused on the specifics of the mount and any accompanying damage. Photographic documentation was done for those artifacts that required further treatment, those mounts that significantly
compromised the artifact, or those mounts that were of particular interest for future reference and comparison.

The manner in which these artifacts were mounted at The Field Museum 50 years ago followed methods considered acceptable at the time and used in many museums nationwide. The main installation objective that seemed to prevail in the late 1940s and the early 1950s was the need to attach the artifacts firmly to the display case walls and shelves. For the most part this objective was achieved in that damage caused to artifacts was not the result of being mounted insecurely, but rather from the techniques used to secure them so well.

4.1 Types of Mounts and Techniques

The mount and installation techniques used on the artifacts varied depending on the specific artifact, the desired orientation and the mount makers’ preferences. Fortunately, only half a dozen mount techniques and materials were used consistently throughout the 1950s exhibit, allowing the conservators to develop standardized treatment techniques for their removal (Fig. 11).

Figure 11. Various mounts (wire mesh mounts, wooden shelves, dowels, nails and wire) from the 1950s installation. 2004.
The most common mount was made of wire mesh (Fig. 12). This mount was composed of a copper alloy mesh screen which had a protruding (iron) nail or heavy wire soldered onto its outer side. The flat side of these wire mesh mounts was adhered directly to the surface of the artifact with one, or in some cases two, different clear adhesives. The protruding nail or wire was secured to the case wall. The artifacts treated with this type of mount included large and small ceramic and stone figures, and objects of shell, bone, and antler.

Individual wooden shelves were a common mounting technique for ceramic vessels (Fig. 13). The base of the vessel was adhered directly to the shelf with a clear adhesive. In some cases, yellowish-brown glue was found underneath the clear adhesive along with a different color case paint, indicating that the artifact had most likely been mounted in a previous exhibit. The wooden shelf was secured to the case wall by a wooden dowel inserted into one of the side edges of the shelf. Once installed, many of the vessels were then additionally secured by adhering their sides and/or rims directly to the canvas lined wall.

Figure 12 (left). Wire mesh mount. Ceramic figure (catalogue # 188131) reverse.

Figure 13 (right). Wooden shelf mount. Ceramic vessel (catalogue # 240548) side.

Mounts that were commonly used on large or heavy stone and some metal artifacts were dowels of various sizes made from wood, steel, or acrylic (Fig. 14). Holes were drilled into the artifact to accommodate the dowel. One end of the dowel was inserted directly
into the hole and the other end was used for attachment to the case wall. The wooden dowels were often reinforced with a clear adhesive.

![Figure 14. Wooden dowel mount. Stone figure (catalogue # 189288).](image)

Ferrous wire used for stringing beads, bells, or ornaments was often attached to a ferrous wire hook, which was then secured to the case wall. Corrosion products and/or stains on the artifacts frequently resulted from either of these wire sources. Wire was also used to provide the actual mounting material for artifacts such as smoking pipes, where it was inserted through the mouthpiece and bowl and then secured to the case wall. This technique caused abrasive damage on the interior of these artifacts.

Nails and pins were commonly used directly on ethnographic textiles and skins in order to tack them to the walls. As a result, the artifacts became distorted and holes were created; in a few instances metal corrosion stains occurred. Nails or pins were sometimes found placed through sinew or thread, resulting in tears and breakage; in some cases this caused the loss or loosening of attached beads.

The mounts used in the former exhibit to display costumes were humanoid forms. Comprised of a painted papier-maché upper body shape resting on an upright pole, the pole was secured to the case bottom with a flange. In one instance the metal pole was inserted through the seam of a moccasin causing the opened seam area to become vulnerable to further tearing and loss of ornamentation (Figs. 15, 16). Some of the artifacts were secured to the form with nails and others were tied down tightly with metal thread. Staining and compression occasionally occurred.

Of all the mounts encountered, the three most problematic types were those involving adhesives: wire mesh mounts, wooden shelves and wooden dowels. These artifacts were removed from their cases with mounts intact and taken to the conservation laboratory.
Figure 15 (left). Mannequin wearing moccasins (catalogue #16100 A & B) as photographed shortly after installation in 1950. Photographer unknown. Photo courtesy of The Field Museum, A92979.

Figure 16 (right). Moccasin (catalogue # 16100 A) as photographed in 2003 during de-installation. Moccasin seam had been opened in the 1950s to insert mannequin rod. 2003.

4.2 Adhesive characteristics

Prior to removing any of the adhesive-held mounts, chemical spot tests were conducted to indicate the types of adhesives that were most likely present. Based on visual observation and the types of adhesives available in the early 1950s, cellulose nitrate, poly(vinyl)acetate (PVAC) or a derivative, and an animal glue (such as hide glue) seemed probable. The tests followed those outlined in Material Characterization Tests for Objects of Art and Archaeology (Odegaard, et al. 2000). The clear adhesive samples tested positive for the poly (vinyl) alcohol (PVAL) test or its PVAC derivatives, and the yellowish-brown glue tested positive for protein (Fig. 17).

Solubility tests (Fig. 18) revealed that the clear adhesive on the wire mesh mount responded well to ethanol and acetone. Different reactions to ethanol and acetone indicated that two different PVACs were used. The one underneath the mesh mount was more readily soluble in acetone. The one around the edges of the wire mesh mount swelled and became more elastic in ethanol than in acetone. Warm deionized water was effective for dissolving the brown-yellowish glue sometimes found on vessels that had been previously mounted.
<table>
<thead>
<tr>
<th>Test Number</th>
<th>Description</th>
<th>Polyvinyl alcohol and its derivatives, PVA<sup>1</sup></th>
<th>Cellulose Nitrate<sup>2</sup></th>
<th>Protein<sup>3</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Clear adhesive from edge of mesh mount A; same as solubility test sample 1.</td>
<td>Positive: Red</td>
<td>Negative: Clear to yellow</td>
<td>Negative: No color change</td>
</tr>
<tr>
<td>2</td>
<td>Clear adhesive underneath mesh mount A; same as solubility test sample 2.</td>
<td>Positive: Dark Red</td>
<td>Negative: Clear to yellow</td>
<td>Negative: No color change</td>
</tr>
<tr>
<td>3</td>
<td>White residue from edge of mesh mount A, after acetone vapor exposure; same as solubility test sample 3.</td>
<td>Positive: Dark Red</td>
<td>Negative: turned Brown almost immediately</td>
<td>Negative: No color change</td>
</tr>
<tr>
<td>4</td>
<td>Clear adhesive from edge of mesh mount B.</td>
<td>Positive: Dark Red</td>
<td>Negative: turned Brown almost immediately</td>
<td>Negative: No color change</td>
</tr>
<tr>
<td>5</td>
<td>Clear adhesive from center of mesh mount B.</td>
<td>Positive: Dark Red</td>
<td>Negative: Clear to yellow</td>
<td>Negative: No color change</td>
</tr>
<tr>
<td>6</td>
<td>Clear adhesive from wooden shelf C.</td>
<td>Positive: Red</td>
<td>Negative: Clear to yellow</td>
<td>Negative: No color change</td>
</tr>
<tr>
<td>7</td>
<td>Yellow adhesive from wooden shelf D.</td>
<td>Negative: No color change</td>
<td>Negative: No color change</td>
<td>Positive: turned Purple almost immediately</td>
</tr>
<tr>
<td>8</td>
<td>Clear adhesive from wooden dowel.</td>
<td>Positive: Dark Red</td>
<td>Negative: Clear to yellow</td>
<td>Negative: No color change</td>
</tr>
<tr>
<td>Positive Control</td>
<td>Polyvinyl acetate resin:<sup>4</sup> Red.</td>
<td>Lab reference sample: Blue</td>
<td>Fish Glue (high tack): Purple</td>
<td></td>
</tr>
<tr>
<td>Negative Control</td>
<td>Acrylic: Yellow with a red outline on edges.</td>
<td>Not tested.</td>
<td>Not tested.</td>
<td></td>
</tr>
<tr>
<td>Negative Control</td>
<td>Epoxy: Yellow with a red outline on edges.</td>
<td>Not tested.</td>
<td>Not tested.</td>
<td></td>
</tr>
<tr>
<td>Negative Control</td>
<td>Fish Glue (high tack): absorbed color – Yellow-brown</td>
<td>Polyvinyl acetate resin:<sup>4</sup> No color change</td>
<td>Polyvinyl acetate resin:<sup>4</sup> No color change</td>
<td></td>
</tr>
</tbody>
</table>

Figure 17. Spot Tests on Adhesive Samples from De-installed Artifacts

¹ Test for poly (vinyl alcohol) using iodine/potassium iodide. 166-7.
² Test for nitrate (cellulose nitrate) using diphenylamine. 164-5.
³ Test for protein using copper (II) sulfate (Biuret test). 144-5.
⁴ Union Carbide, Bakelite PVA AYAA.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Aqueous: Deionized Water</th>
<th>Alcohol: Ethanol</th>
<th>Ketone: Acetone</th>
<th>Aliphatic: Stoddard</th>
<th>Aromatic: Xylene</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Adhesive from edge of mesh mount A; same as spot test sample 1.</td>
<td>After 5 min.: white, soft and gooey</td>
<td>After 1 min.: swollen, soft</td>
<td>After 2 min.: white, swollen, and soft</td>
<td>After 5 min.: no change</td>
<td>After 5 min.: no change</td>
</tr>
<tr>
<td>2 Adhesive underneath mesh mount A; same as spot test sample 2.</td>
<td>After 5 min.: elastic, stays clear</td>
<td>After 2 min.: partially dissolved</td>
<td>After 1 min.: completely dissolved</td>
<td>After 5 min.: no change</td>
<td>After 2 min.: partially dissolved</td>
</tr>
<tr>
<td>3 White residue from edge of mesh mount A, after exposure to acetone vapor; same as spot test sample 3.</td>
<td>After 2 min.: sticky and elastic</td>
<td>After 1 min.: swollen and soft, elastic</td>
<td>After 1 min.: soft</td>
<td>After 5 min.: slightly elastic</td>
<td>After 5 min.: no change</td>
</tr>
</tbody>
</table>

Figure 18. Solubility Tests on Adhesive Samples from Mesh Mount A
4.3 Wire Mesh Mounts

Two basic methods were used to remove the wire mesh mount: an acetone vapor chamber and acetone or ethanol poultices. The method used took into consideration such matters as the size of the artifact, its surface and body condition such as flaking or crumbling, previous breaks and mends, and pigments, as well as the original use of two separate adhesives (Fig. 19).

Figure 19 (left). Wire mesh mount. Ceramic figure (catalogue # 240853) reverse. Before treatment. 2004.

Figure 20. Wire mesh mount. Ceramic figure (catalogue # 240853) reverse. During treatment. White residue is visible from second type of clear adhesive. 2004.
Exposure to acetone vapors in a glass desiccator jar softened and dissolved the adhesive underneath the mount for easy removal. The opaque adhesive on the outer edges remained and was only soft and elastic for about 40 seconds after immediate exposure to the air, after which it turned white in color (Fig. 20). Taking advantage of this window of time, the substance was lifted off as much as possible with a plastic scraper. The white residue left behind was then removed by using an ethanol poultice (Fig. 21). Ethanol swelled the residue sufficiently to allow mechanical removal with a wooden stick and tweezers. Based on the results of the solubility tests for the white residue, poultices using a 50/50 solution of acetone and ethanol on cotton batting were initially attempted on several of the artifacts attached to wire mesh mounts. While this method worked, it took a longer period of time for the adhesives to soften or swell than did the use of the acetone vapor chamber and ethanol poultice combination.

Figure 21 left). Wire mesh mount. Ceramic figure (catalogue # 240853) reverse. During treatment. Ethanol poultice. 2004.
Most of the artifacts mounted to a wire mesh mount showed no visible signs of damage due to the use of the mount (Fig. 22). However, on a few artifacts, minute amounts of adhesive remained in the deep crevices of porous stone and ceramic. Adhesive stains and slight surface and pigment loss also occurred on a few artifacts. In one instance, a conservation and curatorial decision was made not to remove the mesh mount from a low-fired ceramic figurine that exhibited a crumbling body and several mends in order to prevent further loss.

4.4 Individual Wooden Shelves

With the individual wooden shelf, the artifact was directly adhered to the shelf and sometimes adhered to the painted canvas wall lining as well (Fig. 23). In most cases three large spots of the acetone-soluble, clear adhesive were found between the wooden shelf and the base of the artifact; on occasion the entire bottom of a vessel was adhered to the shelf. In some instances, animal glue was found directly between the clear adhesive and the artifact indicating previous mounting.

When possible, a vapor chamber was used to soften the adhesive to allow separation of the artifact from the shelf. However, some artifacts were larger than the glass desiccator available and others had previous restorations that would be affected by the acetone vapor. In these situations, localized poulticing was necessary.

As shown in Fig. 24, a cotton batting and acetone poultice was applied at the join area between the vessel and the shelf, and then sealed with plastic wrap. The poultice was kept moist with the solvent, and allowed to stay in place until the adhesive was completely softened and the vessel could be easily lifted away from the mount. Most of the artifacts that were mounted onto wooden shelves were not altered in any manner. In a few instances, artifacts with porous stone or ceramic bodies or with already fractured surfaces suffered minor surface loss (Fig. 25).

Figure 25. Wooden shelf mount. Ceramic vessel (catalogue #240959). After treatment.

4.5 Wooden Dowels

While metal and acrylic dowels were occasionally used, the most common and most problematic to remove were the wooden dowels. Often used on stone artifacts, the wooden dowels presented a particular challenge in that they were almost always adhered inside of the hole with a clear adhesive (Fig. 26).
In a few situations, placing small artifacts in an acetone vapor chamber resulted in the dowel being sufficiently loosened to be pulled out with pliers, but this method rarely succeeded. The more regularly used method of removing the wooden dowel involved several steps. First, pliers were used to twist and break off the exposed portion of the dowel as flush to the artifact’s surface as possible. Next, an awl was used to make a small hole in the center of the wood for use as a starting guide for a portable drill. Using successively larger bits, the wood was drilled out until only a millimeter of wood remained around the wall of the hole. Proceeding at a slow speed, care was taken not to actually drill to the very bottom of the hole. The depth of drilling was determined by observing the continual decrease in the amount of wood debris that was being produced. The hole was filled with acetone to dissolve the adhesive. The last of the wood debris was loosened and picked out with the aid of a wooden stick, a scalpel, and tweezers (Fig. 27). The use of the dowel mounting technique left permanent holes in these artifacts.
5. The Americas Project Continues

As the deinstallation mount removal process concludes and design development of the new exhibit takes form, conservation continues to be an integral part of the Americas Project. Assessing the designer’s exhibit plan drawings, individual case layouts, and new mounts is an ongoing process involving the project team. Conservation treatment of the 2250 artifacts chosen for the new exhibit commenced in January 2005. Installation of the new exhibit is expected to be completed by the spring of 2007.

6. Conclusion

The deinstallation and relocation processes of the old Americas Halls were successful; only two artifacts were slightly damaged and almost all of the mounts were removed. Fortunately, the particular adhesives selected for use 50 years ago remained soluble in acetone, ethanol or water. Examples of each mount type were added to the Conservation Department’s reference collection of materials and techniques from past displays and housing. These samples aid in distinguishing between pre-collection and post-collection materials found on artifacts. Documentation of any alterations to the artifacts due to extended exhibition was essential to maintaining archival records, understanding artifact damage, and assisting in cultural interpretation. Time and budget constraints dictated that both written and photographic documentation had to focus only on mount-related conditions, damages, and treatments. The use of archival photographs enabled documentation to be done efficiently so that information essential to interpretation of the artifacts was not lost. Established guidelines for exhibitions and production already existed at The Field Museum’s Anthropology Department, however, there were no guidelines for de-installation. The processes developed in the Americas Project will help establish the resources required for future de-installations of permanent exhibits.

Acknowledgments

The authors wish to thank everyone involved with the Americas Project including professional colleagues at the museum, indigenous community representatives and the funding agencies that provided the financial opportunity to update and revise the old Americas Halls at The Field Museum. Unless noted, photographs were taken by the authors.
Suppliers

Acetone (ACS grade), Xylene (ACS grade), Ethanol (denatured ethyl alcohol):

Rhoplex AC-33, water-based acrylic emulsion:
Conservation Support Systems, 924 W. Pedregosa Street, Santa Barbara, CA. 93101.

Epoxy: Ciba Araldite Precision:
Bostik Ltd., Ulverscroft Road, Leicester, England LE4 6BW.

Fish Glue (high tack):
Lee Valley Tools, Ltd., 1080 Morrison Drive, Ottawa, ON K2H 8K7.

Merckoquant Arsenic Test Kit:
Chemical kit NA1760/EM Quant Arsenic (As) Test. EM Science, Gibbstown, NJ 08027.
Merck KgaA, Darmstadt, Germany.

Polyvinyl acetate resin, AYAA:

Stoddard Solvent, Class II:
Fisher Chemical/Fisher Scientific, 1600 W. Glenlake Avenue, Itasca, IL 60143.

References

The Field Museum Photo Archives. Chicago: The Field Museum.
Authors’ Addresses

Joanna Minderop: Conservator, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL 60605-2496, (312) 665-7883, fax (312) 665-7193, (jminderop@fmnh.org).

Cheryl Podsiki: Conservator, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL 60605-2496, (312) 665-7883, fax (312) 665-7193, (cpodsiki@fmnh.org).

Ruth Norton: Chief Conservator, The Field Museum, 1400 S. Lake Shore Drive, Chicago, IL 60605-2496, (312) 665-7880, fax (312) 665-7193, (rnorton@fmnh.org).